

Validation Guide

PES
Double Layer
Filter Cartridges
0.2+0.2µm

Contents

1. Introduction1
1.1 Product Description1
1.2 Materials of Construction1
1.3 Ordering Information2
2. Validation Item 3
3. Test Methods and Results4
3.1 Correlation of non-destructive integrity testing to liquid bacterial challenge with Brevundimonas diminuta(ATCC 19146) for sterilising gradefilters
3.2 Integrity Test Standard(20 ℃)
3.3 Flow Characteristic(20 ℃)
3.4 Maximum Operating Conditions8
3.5 Steam Sterilization (Thermal Stability)8
3.6 Cleanness10
3.6.1 Gravimetric Extractable10
3.6.2 Fiber Releasing11
3.7 Biological11
3.7.1 Biological Safety11
3.7.2 Bacterial Endotoxin: LAL Test
3.8 Chemical Compatibility

1.Introduction

1.1 Product Description

Double layer PES 0.2+0.2µm filter cartridges are sterilize grade cartridge filters manufactured from asymmetric polyethersulfone membrane and polypropylene hardware providing high flow rates and throughputs, low extractable, broad chemical compatibility. Ddouble layer PES 0.2+0.2µm filter cartridges are 100% integrity tested during manufacturing to assure sterilizing-grade performance.

The double layer PES $0.2+0.2\mu m$ filter cartridges are designed for removal of particles and the sterile filtration of aqueous solutions.

The double layer PES 0.2+0.2µm filter cartridges are designed, developed and manufactured in accordance with an ISO 9001:2015 certified quality management system. These filters are manufactured in a controlled environment that meets the air quality standards of an ISO class 8 room with respect to viable and nonviable particulate and positive pressure.

1.2 Materials of Construction

1.2.1Component materials used in this product meets the FDA Indirect Food Additive requirements cited in 21 CFR 177-182.

Todairomonico dicod in El ol IV III Todairo			
Items	Material		
Filter media	asymmetric polyethersulfone membrane		
Support	polypropylene		
Cage	polypropylene		
Core	polypropylene		
End Caps	polypropylene with embedded stainless steel ring		
0-ring	Silicone		

1.2.2Component materials used in this product meets the regulation(EC)No.1935/2004.

Items	Material
Filter media	asymmetric polyethersulfone membrane
Support	polypropylene
Cage	polypropylene
Core	polypropylene
End Caps	polypropylene

1.3 Ordering Information

Application	Туре	Material	Micron	Length	Adaptor	Sealing R
D-Dorsan Biopharma Food&Beverage	PESDL Pleated Filter	DL DL-Double Layer PESDL	0.2+0.2μm	5" 10" 20" 30" 40"	E2-222/Flat with SS insert E3-222/Fin with SS insert E7-226/Fin with SS insert E6-226/Flat with SS insert	S S-Silicone E-EPDM N-NBR V-Viton F-PTFE F-Encapsuled Viton K-Encapsuled Silicone

The Catalogue Number is shown as below:

Adaptor No.	Description	Тор	Bottom
BLANK SPACE	DOE		
E7	226/Fin with SS insert		
E6	226/Flat with SS insert		
E2	222/Flat with SS insert		
E3	222/Fin with SS insert		

2. Validation Item

Retention	3.1 BCT (ASTM F838-20)	3.2 Integrity Test
Flow Rate	3.3 Flow Characteristic	
Durability	3.4 Maximum Operating Conditions	3.5 Steam Sterilization
Cleanness	3.6.1 Gravimetric Extractables	3.6.2 Non-Fiber Releasing
Biological	3.7.1 Biological Safety	3.7.2 Bacterial Endotoxin
Chemical	3.8 Chemical Compatibility	

3. Test Methods and Results

3.1Correlation of non-destructive integrity testing to liquid bacterial challenge with *Brevundimonas diminuta*(ATCC 19146) for sterilize grade filters

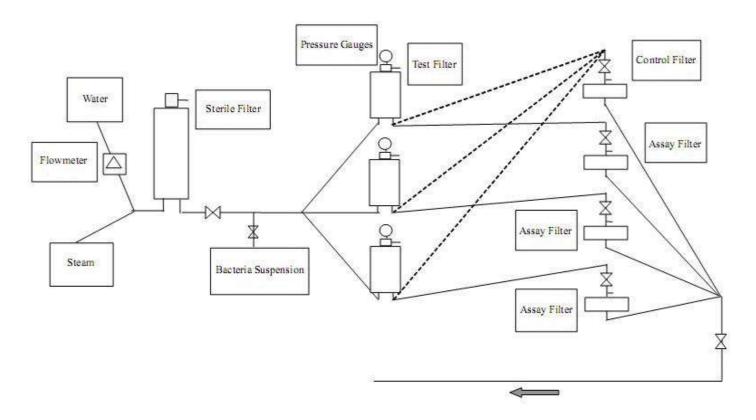
3.1.1 Introduction

The FDA guidelines on Sterile Products Produced by Aseptic Processing (2004) state, "A sterilizing filter is one which, when challenged with the micro-organism Brevundimonas diminuta(B. diminuta), at a minimum concentration of 10^7 organisms per cm 2 of filter surface, will produce a sterile effluent".

In order to meet the requirements of this guideline, liquid challenge tests using Brevundimonas diminuta (ATCC 19146) were performed with PES filter cartridges using a minimum of $1x10^7$ colony forming units (CFU)/cm² of effective filtration area.

The correlation between microbial retention and a non-destructive integrity test is also an important aspect of the validation of sterilizing grade filters. The FDA guideline further states, "After a filtration process is properly validated for a given product, process and filter, it is important to assure that identical filter replacements (membrane or cartridge) used in production runs will perform in the same manner. One way of achieving this is to correlate filter performance data with filter integrity testing data". The integrity tests used during this validation study were the Forward Flow and Bubble Point tests.

The Forward Flow Integrity Test


In the Forward Flow test, a filter is wetted with a suitable test liquid and a pre-determined gas pressure is applied to the upstream side of the filter assembly. After a stabilization period, the gas flow through the wetted membrane can be measured manually on the downstream side or on the upstream side, using sensitive flow measurement equipment such as the integrity test devices.

The Bubble Point Integrity Test

In the Bubble Point test, a filter is wetted with a suitable test liquid. After a stabilization period, increasing the gas pressure to the upstream side of the filter assembly, using sensitive flow measurement equipment such as the integrity test devices to test the change point of the gas flow rate.

3.1.2 Summary of Methods

Double layer PES 0.2+0.2 μ m filter with different batch lots were subjected to microbial challenge tests using an aqueous suspension of *Brevundimonas diminuta* (ATCC 19146). Prior to the challenge tests the filters were installed in an appropriate housing, flushed with DI water at a flow rate of 4 L/min for 15~20 minutes, and then autoclaved at 121 °C for 30 minutes. The filter assembly was then aseptically connected to a pre-sterilized challenge apparatus.

A Forward Flow integrity test was then performed using an integrity test instrument with an air test pressure of 2.8bar (40.6 psi).

An aqueous suspension of *Brevundimonas diminuta* was passed through the filter to achieve a challenge level of $> 1 \times 10^7$ colony forming units (CFU) per cm² of effective filtration area.

During the challenge test, the entire filter effluent was passed through a $0.2~\mu m$ -rated analysis disc on the downstream side of the test filter assembly. The filter disc was incubated on TSA and following incubation, the disc was examined to determine if any colonies had grown, indicating whether or not bacteria had passed through the test filter during the challenge.

3.1.3 Test Results

Table listed below indicates double layer PES 0.2+0.2µm that are forward flow tested before and after bacterial challenge. The bacterial challenge was conducted using ASTM F838-2 0 to provide the necessary correlation between a bacterial challenge and a non-destructive integrity test.

Filter type: double layer PES 10", 0.2+0.2µm

Challenge organism: Brevundimonas Diminuta (ATCC 19146)

Filter Serial	Forward Flow	Challenging	Sterile	LRV/
Number	mL/min	bacteria(CFU/10inch)	Effluent	cm ²
402230511004	9.8	1.67*10 ¹¹	Yes	7.44
402230511006	10.2	1.29*10 ¹¹	Yes	7.33
402230511010	10.3	2.72*10 ¹¹	Yes	7.65
403050211002	10.5	1.67*10 ¹¹	Yes	7.44
403050211005	10.6	1.9*10 ¹¹	Yes	7.5
403040611007	10.8	1.81*10 ¹¹	Yes	7.47
403040611005	10.8	2.93*10 ¹¹	Yes	7.69
403050211004	11.1	2.72*10 ¹¹	Yes	7.65
403050211009	11.3	1.29*10 ¹¹	Yes	7.33
402230511008	11.3	2.89*10 ¹¹	Yes	7.68
403040611010	11.4	1.98*10 ¹¹	Yes	7.51
403040611001	11.5	2.56*10 ¹¹	Yes	7.63
402230511002	11.6	1.68*10 ¹¹	Yes	7.44
403040611009	11.8	2.24*10 ¹¹	Yes	7.57
403050211006	11.8	2.61*10 ¹¹	Yes	7.63
403050211008	12.2	1.71*10 ¹¹	Yes	7.46
402230511003	12.3	1.71*10 ¹¹	Yes	7.46
402230511012	12.5	2.25*10 ¹¹	Yes	7.57
403040611011	12.5	2.24*10 ¹¹	Yes	7.57
402230511005	12.6	2.25*10 ¹¹	Yes	7.57
402230511009	12.6	2.61*10 ¹¹	Yes	7.63
403050211001	12.8	1.81*10 ¹¹	Yes	7.47
403040611003	13.0	1.98*10 ¹¹	Yes	7.51
403050211010	13.1	1.23*10 ¹¹	Yes	7.31
402230511011	13.5	2.89*10 ¹¹	Yes	7.68
403040611006	14.2	1.9*10 ¹¹	Yes	7.5
403050211012	15.6	1.23*10 ¹¹	Yes	7.31
403040611004	15.8	2.93*10 ¹¹	Yes	7.69
403050211007	16.5	2.56*10 ¹¹	Yes	7.63
402230511015	17.8	1.68*10 ¹¹	Yes	7.44

3.1.4 Conclusions

A Typical double layer PES $0.2+0.2\mu m$ filters from production, 3 Opcs were found to pass the forward flow integrity test. The table also indicates that double layer PES $0.2+0.2\mu m$

filter with Forward Flow \leq 17.8 mL/min/10"@ 2.8bar at 20 °C has sterile filtration efficiency when challenged with > 1 x 10⁷ CFU per cm² of filtration area using *Brevundimonas diminuta*. Analysis in base of results of forward flow, tested filter \leq 1 6ml/min gave sterile effluent when challenged with LRV>7 of *B.diminuta*.

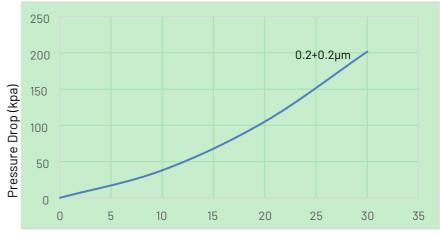
3.2Integrity Test Standard(20±5℃)

In base of test results of validation test, forward flow i s approved as suitable test methods for double layer PES 0.2+0.2 μ m filter cartridges. We also test the bubble point before and after bacterial challenge. Bubble point \geq 3.5bar at 20 $^{\circ}$ C has sterile filtration efficiency.

The Integrity test value standard is as below:

Wetting Liquid	DI Water			
Temperature	20±5° C			
Test Gas		Air		
Allowable Integrity Value limit	Forward Flow: ≤16mL/min@2.8I			
Allowable Integrity Value limit	Bubble Point:	≥3.5bar		

3.3 Flow Characteristic(20±5℃)


3.3.1 Summary of Methods

Typical double layer PES filter Cartridge from production were used for the tests. The filters were flushed with DI water@2.0bar for 15-20mins. Then passed forward flow in base of 2.8bar air test pressure.

Standard production double layer PES 0.2+0.2µm filter cartridge(10", EFA 0.6m 2) were installed with flow rate test system device, which adjust the flow rate and pressure drop by auto-valve. Then take the continuous records with flow rate, upstream & downstream pressure value, temperature etc.

3.3.2 Test Results

Here is the flow chart of filter cartridge

Flow Rate@20 ℃ (L/min)

3.3.3 Conclusions

These data can be used to assist users in sizing filter systems.

3.4 Maximum Operating Conditions

3.4.1Summary of Methods

Typical double layer PES $0.2+0.2\mu m$ filter cartridges from production were used for the tests. The filters were flushed with DI water@2.0bar for 15~20mins. Then passed forward flow in base of 2.8bar air test pressure.

Standard production double layer PES 0.2+0.2µm filter cartridge (10", EFA 0.6m²) were installed with pressure drop test system device, which adjust the upstream and downstream pressure by auto-valve.

Use ISO Standard powers to increase the pressure drop till 5.0bar , temperature 25 $\,^{\circ}$ C and keep the pressure for 30mins, total 4 cycles.

Use Standard test dust to increase the pressure drop till 2.0bar, temperature 80 $^{\circ}$ C and keep the pressure for 30mins, total 3 cycles. Then test the integrity.

3.4.2 Test Results

	Integrity Test(Bef pressure test		Integrity Test(After the pressure test)		
Filter Serial Number			Forward Flow(mL/min@2.8bar)	Bubble Point(bar)	
402230511007	12.9	3.896	12.1	3.921	
402230511013	11.8	4.012	11.9	3.997	
403040611002	12.1	3.915	12.6	3.956	
403040611008	10.6 3.954		10.5	4.008	
403050211011	11.7	3.998	11.5	4.001	

The Integrity test value standard is forward flo w \leq 16mL/min@2.8bar, bubble point \geq 3.5bar, test temperature 20 \pm 5°C.

3.4.3 Conclusions

Here is the Max. pressure drop and temperature of filter cartridge

Maximum Differential Pressure (Forward)	Maximum Operating Temperature
5.0bar @ 25 °C	80°C
2.0bar @ 80 °C	

3.5 Steam Sterilization(Thermal Stability)

3.5.1 Summary of Methods

The purpose of these tests was to determine the effects of repeated exposure to in-line steam or autoclave cycles on filter integrity using standard double layer PES filters from production. The filters were flushed with DI water @2.0bar for 15~20mins. Then passed forward flow in base of 2.8bar air test pressure.

During this autoclave study, filters were steamed using high initial differential pressures (1.0bar (14.5 psi)) at 125°C (257°F). The tests were performed in 30 minutes cycles in the forward (out to in) direction.

During the on-line steam sterilization, These filter cartridges were installed in stainless steel housing and steamed in place in the forward (out to in) direction using saturated steam at constant pressure and flow while ensuring effective condensate drainage. After each steam-in-place cycle the filters were cooled by passing dry compressed air through them.

Integrity tests maintained integrity after Sterilized in place and Autoclave to determine the ability of the filter to provide a sterile filtration.

3.5.2 Test ResultsForward Flow(mL/min) after the following Number of 30 minutes Steam Cycles.

Serial No.	Ocycles	10cycles	30cycles	50cycles	100cycles	150cycles
402230511016	11.8	11.5	12.1	11.8	12.4	12.1
402230511017	12.3	12.5	12.4	12.0	13.1	11.6
403040611012	10.9	10.6	10.9	11.3	11.5	11.5
403040611013	11.6	12.3	11.9	12.5	12.1	12.4
403040611014	12.5	13.1	12.8	12.9	12.6	13.1
403050211015	11.6	11.5	11.9	12.1	12.2	12.7
403050211014	11.7	10.9	11.5	10.9	11.7	11.5
403050211016	10.9	11.7	11.4	11.2	12.0	10.6
402230511018	10.1	10.8	11.1	12.5	11.9	10.9
402230511019	13.8	13.1	12.8	13.4	13.2	14.1

The Integrity test value standard is forward flo w \leq 16mL/min@2.8bar, test temperature 20 \pm 5°C.

Forward Flow (mL/min) after the following number of 30 minutes on-line steam cycles

Serial No.	Ocycles	10cycles	20cycles	30cycles	40cycles	50cycles
403040611015	12.5	13.5	12.8	13.1	12.5	12.2
403040611016	11.8	11.6	11.5	12.2	12.1	11.6
403040611017	13.1	13.4	12.9	13.2	13.8	12.7
403050211017	12.9	12.7	13.1	12.8	12.5	12.4
403050211018	12.4	12.6	12.2	13.1	12.7	13.0

The Integrity test value standard is forward flo w \leq 16mL/min@2.8bar, test temperature 20 \pm 5°C.

3.5.3 Conclusions

Double layer PES 0.2+0.2µm filters have been demonstrated to be capable of withstanding multiple in-line steam/autoclave sterilization cycles.

The data presented in this section support the following product claims for in-line steaming/autoclaving double layer PES 0.2+0.2µm filter cartridges:

Sterilized in Place			Autoclave			
Temp.	Time	ΔΡ	Cycles	Temp.	Time	Cycles
135℃	30min	30kPa	50	125℃	30min	150

3.6 Cleanness

3.6.1Gravimetric Extractable

3.6.1.1Summary of Methods

Typical double layer PES 0.2+0.2µm filter Cartridg es from production were used for the tests.

Preparation of Filter Samples

Extractables tests were performed on typical production filter cartridges (10inch, 0.6m²), which had been autoclaved in order to maximize the quantity of any extractable material present. The filters were wrapped in aluminium foil and autoclaved for half hour at 121°C, using a slow exhaust cycle. Visible droplets of water remaining on the filter elements were allowed to evaporate at room temperature before the extraction was performed.

Extraction Procedure

Dynamic extraction tests were performed. The test filters were immersed in 1800 ml of extraction fluid in a clean measuring cylinder for 24 hours. For four hours the filter was gently moved up and down. This movement created flow through the filter membrane as a result of the pressure head that was created each time the element was partially lifted out of the liquid.

Analysis of Material Extracted

After the extraction,1500mL of the extraction liquid was evaporated to dryness and the non-volatile extractable were determined gravimetrically.

3.6.1.2 Test Results

Extraction Fluid	Filter serial number	Gravimetric Extractable (milligrams per Filter)	Average(milligrams)
	402230511020	15.8	
DI Water	403040611018	16.7	16.5
	403040611019	17.1]

3.6.1.3 Conclusions

The extractable determined of double layer PES filter cartridge 0.2+0.2µm were depended by different solvent. The extractable levels under different solvents, different solubility, different temperature and different contact time are not consistent, so it is recommended to test under actual process conditions.

3.6.2 Fiber Releasing

3.6.2.1 Summary of Methods

Typical double layer PES $0.2+0.2\mu mfilter$ Cartridge from production were used for the tests.

Filters were autoclaved for one cycle of 30 minutes, 121° C, and then flushed with a total of 10 liters of 0.1 µm filtered water at a flow rate of 1 L per minute. The filtrate was passed through a 0.65µm black gridded disc filter to collect any fibers removed from the filter. Filters were then integrity tested to verify that only integral filters were used in the test.

3.6.2.2 Test Results

double layer PES 0.2+0.2μm Filter – Fiber Shedding Results						
Filter serial number	Number of Fibers in filtrate	Forward Flow(mL/min/10"@ 2.8bar,20 ℃)				
403050211019	0	12.8				
403050211020	0	13.4				
402230511021	0	12.9				

The Integrity test value standard is forward flo w \le 16mL/min@2.8bar, test temperature 20 \pm 5°C.

3.6.2.3 Conclusions

The double layer PES filter cartridge $0.2+0.2\mu m$ from production don't have Fiber releasing and meet the request of FDA 21 CFR 210.3(b)(6).

3.7 Biological Safety

3.7.1 Biological Tests

3.7.1.1 Summary of Methods

These filters are non-toxic per USP Class VI Biological Tests for Plastics.

Systemic Injection Test, Intracutaneous Test as well as Implantation Test were performed to determine the toxicity of this filters. This testing was performed by an independent laboratory.

3.7.1.2 Conclusions

The materials used in double layer PES 0.2+0.2µm filter cartridges from production meet the requirements of Biological Reactivity Tests(in vivo), listed in the current revision of the United States Pharmacopeia (USP) chapter <88>for Class VI –121 ° C Plastics. The tests include the Systemic Injection test, the Intracutaneous test and the Implantation test.

3.7.2Bacterial Endotoxin: LAL Test

3.7.2.1Summary of Methods

The test filter was flushed with each of endotoxin-free normal saline . The filtration amount of per filter area is not more than 1mL/cm^2 . Ensure normal saline flow through the entire filter. The aqueous extract was tested with an LAL reagent and all tubes were incubated at $37\pm~1^{\circ}\text{C}$ for 60+2min.

3.7.2.2 Test Results

Extracts from filters contain <0.25EU/mL endotoxin units per milliliter per the USP Bacterial Endotoxins Test. The results are shown in the following table.

double layer PES 0.2+0.2μm filterBacterial Endotoxin: LAL Test per USP(+Clotted;-Not Clotted)						
Filter series number	Positive Control	Negative Control	Positive control of test solution	Test solution	Test results (0.25EU/mL)	
403040611020			+ +		<0.25	
403040611021			+ +		<0.25	
402230511022]		+ +		<0.25	
402230511023	+ +		+ +		<0.25	
403050211021			+ +		<0.25	
403050211022			+ +		<0.25	

3.7.2.3 Conclusions

The double layer PES 0.2+0.2µm filter cartridges from production met the specifications for USP Bacterial Endotoxins Test.

3.8 Chemical Compatibility

The chemical compatibility of double layer PES 0.2+0.2 μ m filters is shown in the chart below. Recommendations are based upon static soak for 72 hours at 25 °C and 1.0 atmosphere (14.5 psi,1.01 bar absolute) pressure. Dynamic (operating) conditions at moderate temperatures ($\pm 10\%$ fluctuation) will not change the recommendations, but high liquid temperature may do so in some cases.

NOTE: This data is intended to provide expected results when filtration device are exposed to chemicals under static conditions for 48hours at $25\,^{\circ}$ C, unless otherwise noted, membrane integrity was tested by bubble point.

This chart is intended only as a guide. User should verify chemical compatibility with a specific filter under actual use condition, such as various temperatures, pressure, and concentration.

R = Resistant

L = Limited resistance

N = Not resistant

- = No data

Chemicals	PES Membrane filter	PP Plastic Parts	Silicone O- ring	EPDM 0- ring	Viton O- ring
Acetic Acid, glacial	N	R	L	L	N
Acetic Acid, 25%	R	R	R	L	L
Acetic Acid, 10%	R	R	L	L	L
Hydrochloric acid, conc. 35%	R	R	N	N	R
Hydrochloric acid, 20%	R	R	N	N	R
Hydrochloric acid, 3.3%	R	R	-	N	R
Nitric Acid, conc.67%	-	R	N	-	R
Nitric Acid,25%	L	R	L	L	R
Sulfuric Acid, conc. 96%	N	N	N	-	R
Sulfuric Acid,16%	R	R	N	-	R
Ammonium Hvdroxide 3N,5.7%	R	R	R	-	R
Ammonium Hvdroxide 6N,11.4%	R	R	R	-	R
Potassium Hydroxide , 15%	R	R	N	R	R
Sodium Hydroxide3N , 11%	R	R	R	R	R
Sodium Hydroxide , 22%	R	R	R	R	R
Amyl Alcohol	R	R	N	R	R
Benzyl Alcohol	R	R	L	-	R
Butanol	R	R	L	-	R
Isopropanol	R	R	R	-	R
Methanol	R	R	R	R	N
Ethylene glycol	L	R	R	-	R
Glycerol	L	R	R	R	R
Propylene glycol	L	R	R	-	R
Ethyl ether	R	R	N	N	N
Tetrahydrofuran	N	R	N	N	N
Tetrahydrofuran, 50% v-v	N	R	-	N	N
Acetone	R	R	R	R	N
Cyclohexanone	-	R	L	L	N
Methyl Ethyl Ketone (MEK)	R	R	N	R	N

Methyl Isobutyl Ketone (MIBK)	N	R	N	R	N
Amyl acetate	L	R	N	R	N
Butyl Acetate	R	R	R	-	N
Cellusolve Acetate	R	R	R	-	N
Ethyl Acetate	L	R	L	N	N
Isopropyl acetate	L	R	L	R	N
Methyl acetate	R	R	N	R	N
Carbon Tetrachloride	L	R	N	N	R
Chloroform	L	R	N	N	R
Ethylene dichloride	N	R	N	-	R
Methylene Chloride	L	R	N	N	L
Tetrachloroethylene	-	R	N	-	R
Trichloroethane	N	R	N	N	-
Benzene	L	N	N	N	R
Toluene	L	N	N	N	R
Xylene	L	N	N	N	R
Cottonseed	-	R	R	-	R
Peanut	R	R	R	-	R
Formaldehyde 37%	R	R	L	R	R
Formaldehyde 4%	R	R	R	R	R
Hexane	L	R	N	-	R
Acetonitrile	N	R	N	R	R
Dimethyl Formamide(DMF)	N	R	R	N	L
Dimethylsulfoxide(DMSO)	N	R	N	N	N
Kerosene	L	-	N	N	R
Pyridine	N	L	N	N	N
Petroleum spirits	R	R	N	N	-
Hydrogen Peroxide	L	R	R	R	-
Ozone	N	R	N	L	-
Phenol	-	R	-	-	-

-----END-----